Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm.
نویسندگان
چکیده
Paradigms requiring either a GO or a NO-GO response are often used to study the neural mechanisms of response inhibition. Here this issue is examined from the perspective of event-related beta (14-30 Hz) oscillatory activity. Two macaque monkeys performed a task that began with a self-initiated lever depression and maintenance (sustained motor output) and required a visual pattern discrimination followed by either a lever release (GO) or continued lever-holding (NO-GO) response. Analyzing simultaneous local field potentials (LFPs) from primary somatosensory, frontal motor, and posterior parietal cortices, we report two results. First, beta oscillation desynchronized shortly after stimulus presentation, the onset of which was approximately the same for both the GO and NO-GO conditions ( approximately 110 ms). Since it is well known that beta desynchronization is a reliable indicator of movement preparation, this result suggests that early motor preparation took place in both conditions. Second, following the GO/NO-GO decision ( approximately 190 ms), beta activity rebounded significantly ( approximately 300 ms) only in the NO-GO condition. Coherence and Granger causality measures revealed that the dynamical organization of the rebounded beta network was similar to that existing during the sustained motor output prior to stimulus onset. This finding suggests that response inhibition led to the restoration of the sensorimotor network to its prestimulus state.
منابع مشابه
Prediction of the response to repetitive transcranial magnetic stimulation by spectral powers of prefrontal regions of brain.
Introduction: Quantitative assessments of the effects induced by repetitive transcranial magnetic stimulation (rTMS) are crucial to develop more efficient and personalized treatments. Objectives: To determine the spectral powers of different subbands of EEG correlated with treatment response to rTMS. Materials and Methods: the spectral powers of different...
متن کاملOn the human sensorimotor-cortex beta rhythm: sources and modeling.
Cortical oscillations in the beta band (13-35 Hz) are known to be modulated by the GABAergic agonist benzodiazepine. To investigate the mechanisms generating the approximately 20-Hz oscillations in the human cortex, we administered benzodiazepines to healthy adults and monitored cortical oscillatory activity by means of magnetoencephalography. Benzodiazepine increased the power and decreased th...
متن کاملCortical Activity During Postural Recovery in Response to Predictable and Unpredictable Perturbations in Healthy Young and Older Adults: A Quantitative EEG Assessment
Introduction: To investigate the effects of predictable and unpredictable external perturbations on cortical activity in healthy young and older adults. Methods: Twenty healthy older and 19 healthy young adults were exposed to predictable and unpredictable external perturbations, and their cortical activity upon postural recovery was measured using a 32-channel quantitative encephalography. Th...
متن کاملThe Differences in Sensorimotor Rhythm Power During Performing In-Phase and Anti-Phase Patterns in Bimanual Coordination
Purpose: The sensorimotor cortex oscillations (frequency ranging between 12 and 15 Hz), commonly known as Sensorimotor Rhythm (SMR) has previously displayed a promising link between the performance of the visuomotor related to skill execution and part of psychology that is adaptive (e.g. the process linked attention which is automatic). This study examined the extent of SMR power in the executi...
متن کاملSENSORIMOTOR CONTROL OVER FUSIMOTOR NEURONS OF THE TENUISSIMUS MUSCLE IN THE A NESTHETIZED CAT: A QUALITATIVE PRIMARY AFFERENT RECORDING
Cortical control of the sensory output of muscle spindles was studied in thirteen anesthetized cats in the present experiment. Gamma motoneuron activity was monitored during electrical stimulation of the sensorimotor cortex while recording from single primary afferents from the tenuissimus muscle. Findings are as follows: 1. The state of anesthesia is crucial in obtaining reproducible resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience
دوره 156 1 شماره
صفحات -
تاریخ انتشار 2008